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1. INTRODUCTION

1.1. Background

The problem of reachirng agreement among separated processors is of fundamental importance to

distributed computing, and has provided a rich set of interesting mathematical problems. (See IF) for

a survey. Also see [GLPT,Sc,G,DLPSW,LMj, for example.) One version of this problem considers a

collection of N processors, p,, *** PN' which communicate by sending messages to one another.
Initially each processor pi has a value vi drawn from some domain V of values, and the correct
processors must all decide on the same value; moreover, if the initial values are all the same, say v, .:

then v must be the common decision. In addition, the consensus protocol should operate correctly if

some of the processors are faulty, e.g., ciash (fail-stop faults), fail to send messages when they

should (omission faults), or send erroneous messages (Byzantine faults). .

Given assumptions about the properties of the message system and the processors and givenl the

types of faults which can occur, one would like to know the maximum number of faults that can be

tolerated; we call this number the resiliency of the system. For example, it might be assumed that

thpre is a fixed bound A on the time for messages to be delivered (communication is synchronous),

and a fixed bound (0 on the rate at which one processor's clock can run faster than another's

(processors are synchronous), and that these bounds are known a priori and can be "built into" the

protocol. In this case, N-resilient consensus protocols exist for Byzantine failures with authentication

[LSP,DSJ and, therefore, also for fail-stop and omission failures; in other words, any number of faults -

can be tolerated. For Byzantine faults without authentication, t-resilient consensus is possible iff N > '

* -~ .. .-
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3t ILSP,L I].

Recent work has shown that the existence of both bounds A and (P is necessary to achieve any

resiliency, even under the weakest type of faults. Dolev, Dwork and Slockmeyer [DDS). building on

earlier work of Fischer, Lynch and Paterson IFLPI, prove that either if a fixed upper bound A on ~

message delivery time does not exist (communication is asynchronous) or if a fixed upper bound '0 on

relative processor speeds does not exist (processors are asynchronous), then there is no consensus

protocol resilient to even one fail-stop fault.

In this paper, we define and study the consensus problem in practically motivated situations which

lie between the completely synchronous and the completely asynchronous cases.

1.2. Pa3rtially Synchronous Communication

We first consider the case in which processors are synchronous (4) exists and is known a priori) anid

communication lies "between" synchronous and asynchronous. There are several natural ways in

which communication might be partially synchronous.

One reasonable situation could be that-an upper bound A on message delivery time exists but we do

not know what it is a priori. On the one hand, the impossibility results of [FLP,DDS] do not apply since

communication is, in fact, synchronous. On the other hand, participating processors in the known

consensus protocols need to know A in order to know how long to wait during each round of

message exchange (we are assuming a lower bound on processor step time). Of course, it is possible

* to pick some arbitrary A to use in designing the protocol, and say that whenever a message takes

longer than this A, then either the sender or the receiver is considered to be faulty. This is not an

acceptable solution to the problem since if we picked A too small, all the processors could soon be

considered faulty, and by definition the decisions of faulty processors do not have to be consistent

with the decision of any other processor. Whatwe would like is a protocol that does not haveA "built

In". Such a protocol would operate correctly whenever it is executed in a system where some fixed

upper bound A exists. It should also be mentioned that we do not assume any probability distribution

on message transmission time which would allow A to be estimated by doing experiments.

Another situation could be that we know A, but the message system is sometimes unreliable,

delivering messages late or not at all. As noted above, we do not want to consider a late or lost

message as a fault. However, without any further constraint on the message system. this "unreliable"

message system is at least as bad as a completely asynchronous one, and the impossiblity results of

(ODSJ apply. The additional constraint is that there is a sufficiently large number L such that if at any

9- ~ * *.*, -9 - .9V
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time during the execution, the message system respects the upper bound A for L units of time, then

all correct processors will reach a common decision sometime before the end of this "reliable

interval". Moreover, the protocol never produces an inconsistent decision (two correct processors

deciding differently) during the "unreliable period" when A does not hold.

The same argument as in the previous case shows one problem with treating lost or delayed

messages in the same way as processor faults. There is also another problem with this idea. In

typical systems, the loss or delay of a message is a much more likely event than a processor failure.

Treating undesirable message behavior as processor faults tends to lead to a drastic overestimate of

processor faults. Since consensus protocols introduce expensive mechanisms to cope with each

additional processor fault, it seems better to separate consideration of the two kinds of events, and to

try to use less costly mechanisms to cope with undesirable message behavior.

A third situation we consider is a technical variant on the second, which strengthens it in two ways.

In this model, messages are never lost and A must hold from some point on after some finite

"unreliable period". We prove that this model is equivalent to the first model, in which A exists but is

unknown.

For succinctness, we say that communication is partially synchronous if one of these three

situations holds: A exists but is not known a priori, or A is known but has to actually hold only for aZ.
sufficiently long period, or A is known and has to hold from some point on.

Our results determine precisely the maximum resiliency possible in cases where communication is
partially synchronous, for four interesting fault models. For fail-stop or omission faults, we show that

t-resilient consensus is possible iff N > 2t. For Byzantine faults with authentication, we show that

t-resilieiL consensus is possible iff N > 31. Also, for Byzantine faults without authentication, we show

that t-resilient consensus is possible iff N > 3t. (The lower bound follows immediately from the result

for the completely synchronous case in [LSPJ.). For the first three types of faults, the number of bits of

communication required is a polynomial in N, t, and either (1) GST (the global stabilization time, or
time when the messages start observing their required bound) for the models in which A holds

eventually or sufficiently long, or (2) A for the model in which A is unknown. On the other hand, our

algorithm for the unauthenticated Byzantine case uses an exponential amount of communication. We

also have a t-resilien' consensus protocol f or Byzantine faults without authentication, which uses a

polynomial amount of communication, but which requires N > 4t. (We do not know whether it is

possible to obtain such a protocol for 31 < N :5 4t.)

Table I bhows the maximum resiliency in various cases and compares our results with previous

work. In each case, the table gives the smallest value of N for which there is a t1-resilient protocol (t >

.~~ ~ ~ ~ .



3

1). Except where indicated (by "exp") the algorithms require communication polynomial in N, t, and

either GST or A.

Failure mode Synchronous Asynchronous Partially -"

Synchronous

Fail-stop t 00 2t+1

Omiss ion t 00 2t+l

Byzantine with
Authentication t 00 3t+1

Byzantine without 3t+1 (exp)
Authentication 3t+1 00 3t < N < 4t+1

Table 1: Smallest number of processors N (N > 2) for which
there exists a t-resilient consensus protocol (t > 1).

It is interesting to note that for fail-stop, omission and Byzantine faults with authentication, the

maximum resiliency for the partially synchronous case lies strictly between the maximum resiliency

for the synchronous and asynchronous cases. It is also interesting to note that in the partially

synchronous case, authentication does not improve resiliency. Results in the synchronous column

are due to [LSP,DS,DFFLS], while those in the asynchronous column are due to [FLP,DDS].

Of the new results, the more interesting and difficult are the protocols and associated upper L..'

bounds. Our protocols use variations on a common method: a processor p tries to get other

processors to change to some value v which p has found to be "acceptable"; p decides v if it receives

sufficiently many acknowledgements from others that they have changed their value to v, so that a 2 .":
value different from v will never be found acceptable at a later time. This general method and similar .-

methods have already appeared in the literature, (cf. Skeen [Sk], Bracha and Toueg [BT]). Reischuk

(R] and Pinter [P] have also obtained consensus results which treat message and processor faults

separately.

1.3. Partially Synchronous Communication and Processors k

It is easy to extend the models described in 1.2 to allow processors, as well as communication, to be

partially synchronous. That is, 0 (the upper bound on relative processor speed) can exist but be

unknown, or 40 can be known b~it actually hold only for a sufficiently long period, or lb can be known
and actually have to hold from some point onward. We obtain results which completely characterize

the resiliency in cases where both communication and processors are partially synchronous, for all

h . .. . .. ." '" " "'" ' ' " " ' "'' " ''"". ."". ." "".. .....
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four of the classes of faults. In such cases, we assume that communication and processors possess

the same type of partial synchrony, that is, either both 4) and A are unknown, or both hold during the

same sufficiently long period, or both hold from some point on.

Surprisingly, the bounds we obtain are exactly the same as for the case where communication alone

is partially synchronous. In the earlier case, the fact that 4 was known impliod that each processor

could maintain a local time that was guaranteed to be closely synchronized with the clocks of other

processors. In this case, no such notion of time is available. We give two new protocols allowing

processors to simulate distributed'clocks. (These are fault-tolerant variations on the clock used by

Lamport in [L21.) One uses 2t + 1 processors and tolerates t fail-stop, omission, or authenticated

Byzantine faults, while the other uses 3t + i processors and tolerates t unauthenticated Byzantine

faults. When the appropriate clock is combined with each of our protocols for the preceding case,

the result is a new protocol for the new case.

1.4. Partially Synchronous Processors

In complete analogy to our treatment of partial communication synchrony, it is easy to define

models where processors are partially synchronous and communication is completely synchronous

(A exists and is known a priori). In Table 2 we summarize our results about N, the smallest number of

processors for which t-resiliency is possible for each cf the four fault models.

Fail-stop: N t

Omission: t < N < 2t + 1

Byzantine with N = 3t + I
Authentication: 2t < N < 2t + I for the

case of "weak unanimity" [F]

Byzantine without N = 3t + 1 (exponential communication)
Authentication: 3t < N < 4t + I (polynomial communication)

Table 2: The smallest number of processors N for which t-resiliency
is possible in the model with synchronous communication and

partially synchronous processors.

Technical Remarks:

Except where we have indicated otherwise, all of our protocols use only a polynomial amount of

communication, that is, the number of bits of communication sent before all correct processors make

a decision is polynomial in N, , and either GST or 10 and A, depending on the particular model of

partial synchrony.

Our protocols assume that an atomic step of a processor is to either receive a set of messages or

,' - --
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send a message to a single processor, but not both; there is no atomic receive/send operation nor an

atomic broadcast operation. We adopt this rathur weak definitioti of a processor's atomic step in this

paper because it is realistic in practice and seems consistent with assumptions made in much of the

previous work on distributed agreement. However, our lower bound arguments are still valid if a

processor can receive and broadcast to all processors in a single atomic step.

The strong unanimity condition requires that if all initial values are the same, say v, then v must be

the common decision. Weak unanimity requires this condition to hold only if no processor is faulty.

Unless noted otherwise, our consiensus protocols achieve strong unanimity, and our lower bounds

hold even for weak unanimity.

Our consensus protocols are designed for an arbitrary value domain V, whereas our lower bounds

hold even for the case IVI 2.

The remainder of this paper is organized as follows. Section 2 contains definitions. Section 3

contains our results for the model in which processors are synchronous and communication is

partially synchronous. The distributed clocks are defined in Section 4, where we also discuss how to

combine our results of Section 3 with the clocks to produce protocols for the model in which both

processors and communication are partially synchronous.

The results for the model in which communication is synchronous and processing is partially

synchronous are omitted here for lack of space, as are the proofs of some of the results in Sections 3

and 4. All of the omitted material appears in [DLS], the complete version of the paper.

2. DEFINITIONS

2.1. Model of Computation

Our formal model of computation is based on the models of [FLP,DDS]. Here we review the basic

features of the model informally. The communication system is modeled as a collection of N sets of

messages, called butters, one for each processor. The buffer of p, represents messages which have

been sent to p, but not yet received. Each processor follows a deterministic protocol involving the

receipt and sending of messages. Each processor p, can perform one of the following instructions in

each step of its protocol:

Send(m,p) - places message m in p,'s buffer;

Receive(p) -removes some (possibly empty) set S of messages from p,'s buffer and delivers them to

pi.

L
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In the Send(m~p) instruction, pi can be any processor, i.e., the communication network is

completely connected. A processor's state is determined by the contents of its memory, including

any special registers (e.g., program counter). A processor's protocol is specified by a state transition

diagram; the number of states can be infinite. The instruction to be executed next depends on the

current state, and the execution causes a state transition. For a Receive instruction, the next state

depends on the set S of delivered messages. The initial state of a processor pi is determined by its

initial value v in V. At some point in its computation, a processor can irreversibly decide on a value in

V.

For subsequent definitions, it is useful to imagine that there is a "real-time clock" outside the

system that measures time in discrete steps. At each tick of real time, some processors each take one

step of their protocols. A run of the system is described by specifying for each real-time step: (1) the

processors which take steps, (2) the instruction which each processor executes, and (3) for each

Receive instruction, the set of messages delivered. Runs can be finite or infinite. Given an infinite run

R, the message m is lost (in run R) if m is sent by some Send(m,p), p. executes infinitely many Receive

instructions in R, and m is never delivered by any Receive(pi).

2.2. Failures

A processor executes correctly if it always performs instructions of its protocol (transition diagram)

correctly. A processor is correct in run R if it executes correctly in R and, if R is infinite, it takes

infinitely many steps in R. We consider four types of increasingly destructive faulty behavior.

Fail-stop: The processor executes correctly but can stop at any time. Once stopped it cannot

restart.

Omission: The processor executes correctly except that Send(m,p.) might not place m in p,'s buffer.

Authenticated Byzantine: The processor exihibits arbitrary behavior. However, messages can be

signed with the name of the sending processor in such a way that this signature cannot be forged by

any other processor.

Byzantine: The processor exhibits arbitrary behavior, and there is no mechanism for signatures.

However, we assume that the receiver of a message knows the identity of the sender.

2.3. Partial Synchrony

Let I = ft I,t2 I be an interval of real time and let R be a run. We say that the communication bound A

holds in I fo, run R provided that if message in is placed in p s buffer by some Send(m.p) at a time s

in I, and if p. executes a Receive(pr) at a time in I with s >s + A, then m must be delivered to pj at
22S
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e sor earlier. This says intuitively that A is an Lipper bound on miessage transmission timre in the

rvaI 1. The processor bound 41 hol&z in I fcn I? pruvided that in any contiguous subintuival of I

Rtaining (1) steps, every correct processor takes at least one step. This implies that no correct

cessor can run more than q) times slower than another in the interval 1.

he following conditions, which define varying degrees of communication synchrony, place

istraints on the kinds of runs that are allowed.

1) delta ;s known: there is a fixed A which holds in [1 ,00) for every run R; this is the usual definition

;ynchronous communication.

?delta ;s unknown: for every run R there is a A which holds in [1 ,0).

3) delta holds eventually: there is a fixed A such that, for every run R, there is a time tO such that A

Ids in [tO,OC), and no messages are lost in R.

41) delta holds sufficiently long: there is a fixed A and sufficiently large L such that, for every run R,

?re is a time tO such that A holds in [tO,tO + LI.

f (2), (3), or (4) hold, we say that communication is partially synchronous. In (3) and (4), t0 is called

global stabilization time (GST). In (4), L will in general depend on A, <0 and N. By replacing A by 4*

ove, (1) defines synchronous processors, and (2)-(4) define three types of portially synchronous

)cessors.

,'ix any of the four possible fault models. In [OLS] we show results that can be paraphrased as (4)

(3), (3) .>(2) and (2) -)(3). Thus, in a sense, (2) and (3) are equivalent, in that the existence of a

nsensus protocol in one of these models implies the existence of a consensus protocol in the other,

Me (4) is a weaker model. However, this strengthens our results, since all our protocols work for

(4) variant, while all our lower bounds work for the (3) and (2) variants.

.4. Correctness of a Consensus Protocol

iven assunmptions A about processor and communication synchrony, given a fault mode F, and

en a number N of processors and an integer t with 0 < t < N, correctness of a t-resilient

isensus protocol is defined as follows.

or any st C containing at least N-t processors and any run R satisfying A and in which the

cessors in C are correct and the behavior of the processors not in C is allowed by the fault mode F,

protocol achieves:

... . . . . . . . . . . . . ..eey.unR hreisa& hih odsin[ o....
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Each processor p, repeatedly cycles through all N processors, broadcasting, in different cycles,

cks and claims The private clock of p, is stured ini a local variable ci. Procebsur p, Updates its

)rivate clock every time it executes a receiving clock maintenance operation by considering all the

icks and claims it has received and updating its private clock according to the definition of the private

:Iock given above (thus, the private clock is updated every fourth step that pi takes). The following

wo programs describe the tick and claim broadcasting procedures. A processor begins the -.

listributed clock protocol by setting ci to 0 and calling TICK(O), where TICK(b) is the prococol shown

n Figure 1. Note that the value of ci may change during an execution of TICK(b), but the claim is

nade onl/ for a (b + 1)-tick. This is consistent with our definition of what it means to have broadcast a

b + 1)-tic,.

rICK(b):

while < 14 do
begin

send (c; + 1)-tick to p.;
end;
call CLAIM(b).

LAIM(b):
send (b + 1)-claim to all processors;
if ci > b then call TICK(ci); else call CLAIM(b).

Figure 1: Procedure TICK

The proofs of Lemmas 18 and 19 are fairly straightforward from the definitions and the protocol.

.emma 20 is proved by a simple induction, using Lemma 19.
Lemma 18: For all s > 0 and for all i such that pi is correct, c,(s) <C(s). I
Lemma 19: For all s > 0 the largest tick sent by a correct processor at step s has size at

most C(s) + 1. I
Lemma 20: For all s,x > 0, C(s + x) < C(s) + x. I

The above lemmas are independent of both communication and processor synchrony.

The next few lemmas discuss the behavior of the clocks during the reliable interval I =

GST,GST + L. Lemma 21 says that the private clocks increase at most a constant factor more slowly L

han real time. Lemma 23 has two parts. The first says that the master clock exceeds Ih, value of the

)rivate clocks by at most an additive constant. This, together with Lemma 18, bounds the difference

)etween ar y two private clocks at any instant of real time. The second part of Lemma 23 says that, at .-

east durinq the reliable interval, the master clock runs at a rate at most a a constant factor more

lowly than real time. Let D = A + 44. Note that if a message is sent to a correct processor p at step
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4.1. A Disiibuted Clock for Byzantine Faults without Authentication

Throughout this section we assume that N > 3t + 1. The term step refers to a real-time step;

real-time steps are numbered 0, 1, 2... Processors participate in our distributed clock protocols by

sending ticks to one another. For convenience, we define a master clock whose value at any step s

depends on the past global behavior of the system and is a function of the ticks that have been sent

before s. Even approximating the value of the master clock requires global information about what

ticks have been sent to which processors. We therefore introduce a second type of message, called a

claim, in which processors make atsertions about the ticks they have sent.

An i-tick is the message "i". A >i-&,ick is a j-tick for any j > i. We say p has broadcast an i-tick if it

has sent a > i-tick to all N processors.

An i-claim is the message "I have broadcast an i-tick". A >i-claim is a j-claim for any j> i. We say p

has broadcast an i-claim if it has sent a >i-claim to all N processors.

We adopt the convention that all processors have exchanged ticks and claims of size 0 before step

0. These messages are not actually sent, but they are considered to have been sent and received.

The master clock, C: N - N, is defined at any real-time step s by

C(s) = maximum j such that t-+ 1 correct processors have broadcast a j-tick by the beginning of -- -

step s.

Since all processors are assumed by convention to have broadcast a 0-tick before step 0, C(O)= 0.

For each processor p, the private clock, ci: N -4 N, is defined by

c1(s) = maximum j such that at the beginning of step s p, has received either (1) 2t + 1 >-claims or

(2) messages from t + 1 processors, where each message is either a :O + 1)-tick or a >( + 1)-claim.

Since p, is assumed to have received O-claims from all N processors by step 0, c1(O) = 0.

Let p be a correct processor. In sending ticks, pi's goal is to increment the master clock, so ideally

we would like pi to send a (C(s) + 1)-tick at step s. However, knowing C(s) requires global information.

Instead, p. uses c,. its view of C, to compute its next tick, sending a (ci(s) + 1)-tick at step s. We will

show in Lemma 18 that ci(s) < C(s), so pi will never force the master clock to skip a value. We will

also show that "soon" after GST the value of the master clock exceeds those of the private clocks by

only a constant amount, so during the reliable interval pi will not be pushing the master clock far

ahead of the private clocks of the other processors.

----------------------- - ---- ---- --- ---
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processors are synchronous with some ,I) > 1, and this provides an alternate way of handling the case

4. PARTIALLY SYNCHRONOUS COMMUNICATION AND PROCESSORS

In this section we show that the protocols of the previous section can be modified to work, with the

same resiliencies, in models where both communication and processors are partially synchronous.

Moreover, algorithms 1, 2, and 3 will still use a polynomial amount of communication. We describe

the modified protocols in detail for the case where 4) and A both hold sufficiently long: that is, there

are fixed ,onstants tO and A, such that for any run, there is a time GST such that both to and A hold in

the interval [GST,GST + L] for a sufficiently large L depending polynomially on N, 0. and A. As

described in Remark 2 at the end of the previous section, the protocols can be modified for the model

where both 0 and A are unknown by letting the "built in" 0 and A increase as time progresses.

In the previous section, the processors had a common notion of time which allowed time to be

divided into phases. If 40 does not always hold, no such common notion of time is available.

Therefore, the first step is to describe a protocol which gives the processors some approximately

common notion of time, at least during the reliable interval [GST,GST + LI. We call such a protocol a

distributed clock. Each processor has a private (software) clock. Before GST, the private clocks of

correct processors could be very far apart. However, during the reliable interval (GST,GST+ 1_ there

are two correctness conditions which the private clocks of all correct processors must satisfy: within

some constant amount of real time after GST (1) the private clocks must grow at a rate within some

constant factor of real time, and (2) at any real time the difference in the values of any two private

clocks is bounded above by an additive constant known to the processors. The three "constants"

here depend polynomially on N, 4b and A.

Once we have defined the distributed clocks, the protocols of the previous section are modified by

letting each processor use its private clock to determine which round (and therefore, which phase) it

is in. For convenience, processors alternate receiving and sending operations. Alternate pairs of

receive-send operations are used to maintain the distributed clock, with the other receive-send pairs

being used by the consensus protocol. We first describe what happens during the clock maintenance

steps for tro different distributed clocks. The first handles Byzantine faults without authentication

and requires N > 3t + 1. The second handles Byzantine faults with authentication and requires N >

2t + 1. (In [DLS] we define another distributed clock which handles only fail-stop faults, but is

N.resilient. This clock is not needed for the results presented in this paper.)

4°
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other processors should accept a "Decide v" message at any time. For Algorithm 1 (fail-stop and

omission faults) a processor can decide v when it receives any "Decide v" message. For Algorithms 2

and 3 (Byzantine faults), a processor can decide v when it receives t + 1 "Decide v" messages from

different sources. Easy arguments show that the modified algorithms are still correct and that all -

correct processors make a decision within O(t) rounds after GST, and these arguments are left to the

reader. These modifications also give termination conditions for the processors, in models where no

messages are lost. For fail-stop or omission faults, a processor can terminate after it broadcasts a

"Decide v" message. For Byzantine faults, a processor can terminate after it has broadcast a

"Decide v" message and has received "Decide v" messages from 2t other processors. In the model

where messages can be lost before GST, it is not hard to argue that in any consensus protocol

resilient to one fail-stop fault, at least one correct processor must continue sending messages

forever. The argument is similar to Theorems 5 and 10.

2. We have described our algorithms for the model in which delta holds sufficiently long. We can

then apply the model reductions mentioned at the beginning of section 2 to show that the same

resiliency is possible in the model where delta is unknown. Although this is theoretically convenient,

it may not give the most efficient protocols for the model where delta is unknown. An alternative is to

modify the algorithms. Instead of using a fixed A to determine the length R of a round, A is increased -

Lh/NJ
as time progresses. For example, one might use A = 2 during phase number h. If A' is the
"actual" A that holds in the particular run that the the algorithm is executing, then the effective GST

(the time when the increasing A reaches the actual A will be polynomial in N and A').

3. If t b> 1, we can again imagine that the processors have internal clocks, but that the clocks drift

apart at a rate bounded above by 0. One approach to designing a protocol for this model is to use

one cf wle clock synchronization algorithms of [HSS, DHS, LL]. There are clock synchronization

algorithms resilient to several Byzantine failures, even without authentication, and which have two

properties: (1) the clocks of correct processors never differ by more than a fixed additive constant,

and (2) the clocks of correct processors never run slower or faster than real time by more than some

fixed multiplicative constant. Property (1) permits time to be divided into rounds so that no two

correct processors are in different rounds at the same real time. Property (2) ensures that the

algorithms run no slower than some constant times real time. Together, these two properties allow us

to run the consensus protocols of this section, with processors reading their internal (private) clocks

instead of a shared clock.

In Section 4 we show that the resiliency achieved by the protocols of this section can also be

achieved of both processors and communication are partially synchronous. Of course. these stronger

results imply that the same resiliency is achievable if communication is partially synchronous and
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Proof: It is clear that at least t + 1 correct processors lock v at phase k. Assume that the
second conclusion is false. As before, let I he the first phase at which one of th locks on v
set at phase k is released without immediately being replaced by another, higher-
numbered lock on v.

Therefore, some correct processor received a valid message (w,h) during lock release
phase I, where w # v and k < h < I. Since (w,h) is valid, at least N-2t > t + 1 processors
said that they sent a message (lock w,h) at phase h. Therefore. at least one correct
processor j actually sent (lock w,h). If h = k, then j wotld have sent both (lock w.k) and
(lock v,k), which is impossible. Therefore, k < h < I. Since j sent (lock w,h), j heard during
phase h that N-t processors (namely, the set that owns phase h) found w to be acceptable V
at phase h. But since at leadt t + 1 correct processors have v locked at least through the
first round of trying phase I, this is impossible. I

Lemma 16: Immediately after any lock release phase which occurs after GST, the set of
values locked by correct processors contains at most one value.

Pr oof: Say that processor i has a lock on v with associated phase h and processor i has
a lock on w with associated phase h' where v :t w. Say that h' > h. During the lock release
phase, i will receive the. message (w,h') from j. Since j received the message (lock w,h')
from at least N-t processors during trying phase h' and since at least N-2t of these are -

correct. i will determine that (w,h') is valid. Therefore i will release the lock on v. I

Theorem 17: Assume the model with Byzantine faults without authentication, where the
processors are synchronous with P = 1 and communication is partially synchronous (delta
holds sufficiently long). Assume N > 3t + 1. Then Algorithm 4 achieves strong unanimity
for an arbitrary value domain.

Proof: The argument that disagreement cannot be reached is similar to before.

Next, we argue eventual agreement. Consider any trying phase, k, belonging to a set S
consisting entirely of correct processors. Assume i is the distinguished processor at
phase k. We claim that processor i will reach a decision at trying phase k (if it has not done
so already). By Lemma 16, it follows as in previous proofs that a proper, acceptable value
will be found for processor i to propose. Moreover, since all processors in S are correct, it
is obvious that the entire trying phase k will complete successfully, and processor i will
make a decision at the end. I

Our lower bound is tight for the case of unauthenticated Byzantine faults with no further restrictions.

If we consider the problem with the requirement that communication be bounded by a polynomial, or

that time be bounded by something linear in N after GST, then we do not know how to close the gap.

Remarks

1. Algorithms 1, 2 and 3 have the property that all correct processors make a decision within O(N)

rounds after GST. The time to reach agreement after GST can be improved to O(t) rounds by some

simple modifications. The bound O(t) is optimal to within a constant factor since (H, FLa] show that

t + 1 rounds are necessary even in case communication and processors are both synchronous and

failures are fail-stop. A modification to all the algorithms is to have a processor broadcast the

message "Decide v" whenever it decides v. This message is not tagged with a phase number, and
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processors must tell all other processors that N 2t processors found v to be acceptable
and proper so that all the correct processors will acknowledge the proposal. Thus, the
proposed value will be decided upon by processor i at trying phase k. 1.

The second protocol of this sectin.n uses only N > 3t + 1 processors, but the amount of

commtnication and the time to reach a decision after GST grows roughly like N' in the worst case.

Algorithm 4: N > 3t + 1

Instead of rotating processors in" successive phases, we rotate pairs (S,i), where S is a size N- t

subset of the set of processors and i is a distinguished processor in that set. Each phase k is owned

by the corresponding S, and the distinguished processor i plays the role of the coordinator.

Processing is again divided into alternating trying and lock release phases. We first describe the

processing during a particular trying phase k. Assume that phase k is owned by the set S of N-t

processors and that i is the distinguished processor. Each trying phase has four rounds. During the

first round each processor in S broadcasts a list of all its acceptable values which are also in its

PROPER set, in the form (list, k). Based on this information, processor i attempts to choose a value to

propose. In order for processor i to propose v, it must have heard that all processors in S find v to be

acceptable and proper. As before, ambiguities are resolved arbitrarily. During the second round,

processor i broadcasts a message (propose v,k). If a processor j in S receives a message (propose

v,k) from i and if heard from all processors in S during the first round that v is acceptable and proper,

then I broadcasts (lock v,k) during the third round. If a processor in S receives (lock v,k) messages

from all in S. then it locks v and sends an acknowledgement to processor i. If processor i receives

acknowledgemnts from all in S, then i decides v. After deciding, processor i continues to participate in

the algc,,,nm. .,l

Each lock release phase has three rounds. During the first round, processors broadcast messages

of the form (v,h) indicating that the sender has a lock on v at associated phase h. If a processor

receives a message (v,h), then during the next two rounds it checks if (v,h) is valid by determining the

set S of processors that owns phase h, and asking each processor in S whether it sent a message

(lock v,h) at phase h. If at least N.2t processors in S respond affirmatively by the end of the third round

then (v,h) is valid; otherwise it is not valid. If a processor has a lock on v with associated phase h and

it receives a valid message (w,h') with w * v and h' > h, then it releases the lock on v.

Lemma 15: Suppose that some correct processor decides v at phase k, and k is the
smallest numbered phase at which a decision is made by a correct processor. Then at
least t + 1 correct processors lock v at phase k. Moreover, each of the correct processors
that locks v at phase k will, from that time onward, always have a lock on v with associated
phase number at least k.

,-. ... . .%
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Lemma 12: Suppose that some correct processor decides v at phase k, and k is the
smallest numbered phase at which a dpcision is made by a correct proee;nr Then at
least 2t + I correct processors lock v at phase k. Moreover, each of the correct
processors that locks v at phase k will, from that time onward, always have a lock on v with
associated phase number at least k.

Proof: It is clear that at least 2t + 1 correct processors lock v at phase k. As.ume that -
the second conclusion is false. Then let I be the first phase at which one of the locks on v
set at phase k is released without immediately being replaced by another, higher
numbered lock on v.

Then the lock is released during lock release phase I, when it is learned that at least t + 1
prccessors have locks on values w # v with associated phases h, where k < h <
I. Therefore, at t one correct processor, say j, has such a lock. Lemma 11 implies that
no correct processor has a lock on any w * v with associated phase k. Therefore, the
correct processor i has a lock on w * v with associated phase h, where k < h < I. In order
for i to place this lock on w, at least N-3t processors each claim that at least N-2t
processors find w acceptable at the first round of phase h. Since N.3t > t + 1, at least one
correct processor makes this claim, so at least N-2t processors actually find w acceptable.
Since 2t + 1 correct processors have v locked at least through the first round of I, this is
imr ossible. I

Lemma 13: Immediately after any lock release phase which occurs completely in the
interval [GST,GST + L] either no value is locked or there exists some locked value v such
that at most t correct processors hold locks on values other than v.

Proof: Straightforward from the'lock release rule. (Consider some v whose lock is from
the earliest phase from which any lock persists.) I

Theorem 14: Assume the model with Byzantine faults without authentication, where the
processors are synchronous with * = 1 and communication is partially synchronous (A ,;

holds sufficiently long). Assume N > 4t + 1. Then Algorithm 3 achieves strong unanimity

for an arbitrary value domain. ., -

Proof: The proof that disagreement cannot be reached follows easily from Lemma 12 as
in the proof of Algorithm 1.

Next, we argue eventual agreement. Consider any trying phase, k, belonging to a correct
processor, i, which is executed after a lock release phase, both occurring during
[GST,GST + ]. We claim that processor i will reach a decision at trying phase k (if it has
not done so already). There are two cases. If some value v is locked at the beginning of
trying phase k, then by Lemma 13, there is some locked value v such that at most t correct
processors have values other than v locked'at the start of trying phase k. Therefore, v is
acceptable to at least N.2t > 2t + 1 correct processors. Thus, by the beginning of trying
phase k, these 2t + 1 correct processors have communicated to all correct processors that
v is *groper, so every correct processor will have v in its PROPER set. In the second case,
no value is locked, so all values are acceptable. If there are at least t + 1 processors with
the same initial value v, then v is in the PROPER set of each correct processor at the
beginning of trying phase k. On the other hand, if this is not the case, then all values in the
valu,3 set are in the PROPER set of all correct processors at the beginning of trying phase
k. It follows in either casd that a proper, acceptable value will be found for processor i to
propose.

Moreover, any value v which is proposed by processor i must have had N - 2t processors
tell i that N - 2t processors found v to be acceptable and proper. Then at least N. t ..-

. ................... ....... ...... _
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Both algorithms are designed for the model in which A holds sufficiently long and for arbitrary value

domains.

In both algorithms, the processors' PROPER sets are handled exactly as in Algorithm 2.

Algorithm 3: N > 4t + 1

Processing is again divided into alternating trying and lock release phases, with phases numbered

as before. Now, however, the trying phases are of length 4R.

As before, at various times during the algorithm, processors may lock values. In algorithm 3, only a

phase number is associated with every lock. As before, a value v is acceptable to p if p does not have

a lock on any value other than v.

We now describe the processing during a particular trying phase k. Let s denote the time of the

beginning of the first round in phase k, and assume k i mod N. At time s, each processor

broadcasts a list of all its acceptable values which are also in its PROPER set, in the form (list, k). At

time s + R, each processor p broadcasts a vector which says, for each processor q, which values q

sent to p at the preceding round. At time s + 2R, processor i attempts to choose a value to propose.

In order for processor i to propose v, it must have heard that each of at least N -2t processors claims

that at least N -2t processors find value v acceptable and proper at phase k. As before, ambiguities

are resolved arbitrarily. Processor i then broadcasts a message (lock v,k).

If any processor receives a (lock v,k) message by time s + 3R, and also has heard that each of at

least N - 3t processors claims that at least N -2t processors find value v acceptable and proper at

phase k '; ,.cks v, associating the phase number k with the lock, and sends an acknowledgement to

processor i. Release of other locks on v is handled as before.

If processor i receives acknowledgements from at least 3t + 1 processors, then processor i decides

v. After deciding v, processor i continues to participate in the algorithm.

Lock release phase k begins at time s + 4R. At time s + 4R, processors broadcast messages of the

form (v,h), indicating that the sender has a lock on v with associated phase h. If any processor has a

lock on some value v with associated phase h, and receives t + 1 messages indicating that t + 1

distinct processors all have locks of the form (w,h') with w * v and h' > h, then the processor . -

releases its lock on v. (The values of w and h' need not be the same in all of these locks.)

Lemma 11: It is impossible for two distinct values to acquire locks by correct
processors at the same trying phase, if that phase belongs to a correct processor.

Proof: The proof is similar to previous proofs and is left to the complete paper. I

. ... --- =..i...-.........inll |]
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h'. - =

handles each one similarly. The entire mnessage E,(Iock vk.proof) is said to be a valid lock on v at

phase k.

If processor i receives acknowledgements from at least 2t + 1 processors, then processor i decides

v. After deciding v, processor i continues to participate in the algorithm.

Lock release phase k begins at time s + 3R. At time s + 3R, processors broadcast messages of the

form E(Iock v,hproof), indicating that the sender has a lock on v with associated phase h and the L
given associated proof, and processor i sent the message at phase h which caused the lock to be

placed. It any processor has a lock on some value v with associated phase h, and receives a properly

signed mt.ssage El(lock w,h',proof') with w * v and h' > h, then the processor releases its lock on v.

The proofs for Lemmas 6 through 8 and of Theorem 9 are analogous to the proofs of the

correspooding results for Algorithm 1.
Le3mma 6: It is impossible for two distinct values to acquire valid locks at the same trying

ph ,se, if that phase belongs to a correct processor. I
Lemma 7: Suppose that some correct processor decides v at phase k, and k is the

smallest numbered phase at which a decision is made by a correct processor. Then at
least t + 1 correct processors lock v at phase k. Moreover, each of the correct processors
that locks v at phase k will, from that time onward, always have a lock on v with associated
phase number at least k. I

Lemma 8: Immediately after any lock release phase which occurs completely in the
interval [GST,GST + LI the set of values locked by correct processors contains at most one
value. I

Theorem 9: Assume the model with Byzantine faults and authentication where the
processors are synchronous with 4 = 1 and communication is partially synchronous (delta
holds sufficiently long). Assume N > 3t + 1. Then Algorithm 2 achieves strong unanimity
for an arbitrary value domain. I

The following lower bound result again applies in the case of w, ak unanimity and a binary value

domain.
Theorem 10: Assume the model with Byzantine faults and authentication, where the

processors are synchronous and communication is partially synchronous (delta holds
eventually and no messages are lost). Assume N < 3t. Then there is no t-resilient
consensus protocol which achieves weak unanimity for binary values. I

3.3. Byzantine Faults without Authentication

Here, we will describe two protocols. The first, simpler, protocol, is t-resilient and uses 4t + 1

processor.;. It uses a polynomial amount of communication. The second protocol needs only 3t + I

processors, thereby achieving the maximum possible resiliency (as implied by the lower bound result

of the previous section), but it uses more than a polynomial amount of communication.

................... ... - .- .. . .- .. ,-. . . .".:, . ...- .-. * .- ,... , * ... *-.. ..... . . .. .. , . - .....***, ,. . . .: ,. .. , . - . , . . . .,,,.. . , . -,.,.: . .. .: -. . . ',',,:'-.,.,, . . ,, .", ,, ,. . . . , ... . , , ,, ,,, ,
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Byzantine faults with authentication.

Algorithm 2: N > 3t 1

Initially, each processor's PROPER set contains just its own initial value. Each processor attaches

its PROPER set and its initial value to every message it sends. If a processor p ever receives 2t + 1

initial values from different processors, among which there are not t + 1 with the same value, then p

puts all of V (the total value domain) into its set PROPER. (Of course, p would actually just set a bit

indicating that PROPER contains all of V.) When a processor p receives claims from at least t + 1

other processors that a particular value v is in their PROPER sets, then p puts v into its own PROPER

set. It is not difficult to check that each PROPER set for a correct processor indeed contains only

proper values.

Processing is again divided into alternating trying and lock release phases, with phases numbered

as before and of the same length as before.

As before, at various times during the algorithm, processors may lock values. In algorithm 2, not

only is a phase number associated with every lock, but also a proof of acceptability of the locked

value, in the form of a set of signed messages, sent by N - t processors, saying that the locked value is

accept, bie and in their PROPER sets at the beginning of the given phase. As before, a value v is

acceptable to p if p does not have a lock on any value other than v.

We now describe the processing during a particular trying phase k. Let s denote the time of the

beginning of the first round in phase k, and assume k - i mod N. At time s, each processor

(including i) sends a list of all its acceptable values which are also in its PROPER set to processor i, in

the form E.(list, k), where E is an authentication function. At time s + R, processor i attompts to

choose a value to propose.. In order for processor i to propose v, it must have heard that at least N - t

processors find value v acceptable and proper at phase k. Again, if there is more than one possible

value which processor i might propose, then it will choose one arbitrarily. Processor i then

broadcasts a message E.(Iock v,k,proof), where the proof consists of the set of signed messages

E.(Iist,k) received from the N - t processors which found v acceptable and proper.

If any processor receives a E.(Iock v,k,proof) message by time s + 2R, it decodes the proof to check

that N.t processors find v acceptable and proper at phase k. If the proof is valid, it locks v, associating

the phase number k and the message E(Iock v,k,proof) with the lock, and sends an acknowledgement

to processor i. In this case, any earlier lock on v is released. (Any locks on other values are not

released at this time.) If the processor should receive such messages for more than one value v, it

_............................
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correct processor i decides v at phase k, and this is the smallest numbered phase at which
a decision is made. Then Lemma 2 ini: es that at all times after phase k. at iP.ast t 4 1
processors have v locked. In consequence, at no later phase can any value other than v
ever be acceptable to N - t processors, so no processor will ever decide any value other
than v.

Next, we argue eventual agreement. Consider any trying phase, k, belonging to a correct
processor, i, which is executed after a lock release phase, both occurring during
[GST,GST + L1. We claim that processor i will reach a decision at trying phase k (it it has
not done so already). By Lemma 3, there is at most one value locked by correct
prccessors at the start of trying phase k. If there is such a value, v. then sufficient
communication has occurred by the beginning of trying phase k so that v is in the PROPER
set of each correct processor. Moreover, any initial value of a correct processor is in the
PROPER set of each correct processor at the beginning of trying phase k. It follows that a
proper, acceptable value will be found for processor i to propose. and that the proposed
value will be decided upon by processor i at trying phase k. I

The foll3wing lower bound shows that the resiliency of Theorem 4 cannot be improved, even for

weak unanimity and a binary value domain.

Theorem 5: Assume the model with fail-stop or omission faults. where the processors
are synchronous and communication is partially synchronous (A holds eventually and no
messages are lost). Assume N < 2t. Then there is no t-resilient consensus protocol which
achieves weak unanimity for binary values.

Proof: Assume the contrary, that there is an algorithm immune to fail-stop faults
satisfying the required properties. We will derive a contradiction.

Divide the processors into two groups, P and 0, each with at least I and at most t
" - processors. First consider the following situation A: all initial values are 0, the processors

in 0 are initially dead and all messages sent from processors in P to processors in P are
delivered in exactly time 1. By t-resiliency, the processors in P must reach a decision; ,;.y
that this occurs after time tA. The decision must be 0. For if it were 1, we could modify the ,..
situation to one where the processors in 0 are alive, but all messages sent from 0 to P take
more than time tA to be delivered. Irn the modified situation, the processors in P still decide
1, contradicting weak unanimity.

Consider situation B: all initial values are 1, the processors in P are initially dead, and
messages sent from 0 to 0 are deliverbd in exactly time 1. By a similar argument, the
processors in 0 decide 1 after ta steps for some finite t9 .

Consider situation C (for Contradiction): processors in P have initial values 0, processors
in 0 have initial values 1, all processors are alive, messages sent from P to P or from 0 to 0
are delivered in exactly time 1, and messages sent from P to 0 or from Q to P take more
than max(tAtB) steps to be delivered. The processors in group P (resp., group Q) act
exactly as they do in situation A (resp., situation B). This yields a contradiction. I

3.2. Byzantine Faults with Authentication

The second algorithm achieves strong. unanimity for an arbitrary value set V, in the case of

•-,-.-. .. ,. .. . ,- .'. . ... . % .. -. -. _ .... , ... -. ** , ***.* - ,,- - ,,'.\ ,. , ' . ,, , , ,, . -
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possible value which processor i might propose; in this case, processor i will choose one arbitrarily.

Processor i then broadcasts a message (lock v,k).

If any processor receives a (lock v,k) message by time s + 2R, it locks v, associating the phase

number k with the lock, and sends an acknowledgement to processor i (in the form of an (ack, k)

message). In this case, any earlier lock on v is released. (Any locks on other values are not released

at this time.)

If processor i receives acknowledgements from at least t + 1 processors by time s + 3R, then

processor i decides v. After deciding v, processor i continues to participate in the algorithm.

Lock release phase k begins at time s + 3R. At time s + 3R, processors broadcast messages of the

form (v,h), indicating that the sender has a lock on v with associated phase h. If any processor has a

lock on some value v with associated phase h, and receives a message (w,h') with w * v and h' > h,

then the processor releases its lock on v.

Lemma 1: It is impossible for two distinct values to acquire locks with the same
associated phase.

Proof: In order for two values v and w to acquire a lock at trying phase k, the processor
to which phase k belongs must send conflicting (lock v,k) and (lock w,k) messages, which
it will never do in this fault model.. I

Lemma 2: Suppose that some processor decides v at phase k, and k is the smallest
numbered phase at which a decision is made. Then at least t + 1 processors lock v at
phase k. Moreover, each of the processors that locks v at phase k will, from that time
onward, always have a lock on v with associated phase number at least k.

Proof: It is clear that at least t + 1 processors lock v at phase k. Assume that the
second conclusion is false. Then let I be the first phase at which one of the locks on v set
at phase k is released without immediately being replaced by another, higher-numbered
lock on v.

In this case the lock is released during lock release phase I, when it is learned that some
processor has a lock on some w * v with associated phase h, where k < h < I. Lemma
1 implies that no processor has a lock on any w * v with associated phase k. Therefore,
some processor has a lock on w with associated phase h, where k < h < I. Thus, it must be
that w is found acceptable to at least N - t processors at the first round of some phase
numbered h, k < h < 1, which means that at least N - t processors do not have v locked at
the beginning of that phase. Since t + 1 processors have v locked at least through the
first round of I, this is impossible. I

Lemma 3: Immediately after any lock release phase which occurs completely In the
interval [GST,GST + L] the set of values locked by processors contains at most one value.

Proof: Straightforward from the lock relc.se rule. I

Theorem 4: Assume the model with fail-stop or omission faults, where the processors
are synchronous with b = 1 and communication is partially synchronous (A holds
sufficiently long). Assume N > 2t + 1. Then Algorithm 1 achieves strong unanimity for an
arbilrary value domain.

Proof: First, we show that disagreement cannot be reached. Suppose that some

Wi
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imagine that communication during one phase is independent of communication during any other

phase.

To argue that our protocols achieve strong unanimity, we use the notion of a proper value defined
as follows: if all processors start with the same value v, then v is the only proper value;, if there are at

least two different initial values, then ail values in V are proper. In all protocols, each processor will

maintain a local variable PROPER, which contains a set of values which the processor knows to be

proper. Processors will always piggyback their current PROPER sets on all messages. The way of

updating the PROPER sets will vaty from algorithm to algorithm.

The first algorithm is used for either fail-stop or omission faults. It achieves strong unanimity for an

arbitrary value domain V.

Algorithm 1: N > 2t + 1

Initially, each processor's set PROPER contains just its own initial value. Each processor attaches

its current value of PROPER to every message that it sends. Whenever a processor p receives a

PROPER set from another processor that contains a particular value, v, then p puts v into its own
PROPER set. It is easy to check that each PROPER set always contains only proper values.

Processing is divided into alternating trying and lock release phases, with pairs of corresponding

phases being numbered by consecutive integers starting with 1, where each trying phase is of length

3R and each lock release phase is of length R. We say that trying phase i mod N belongs to processor

At various times during the algorithm, a processor may lock a value v. A phase number is associated

with every lock. If p locks v with associated phase number k =_i mod N, it means that p thinks that

processor i might decide v at phase k. Processor p only releases a lock if it learns that its supposition

was false. A value v is acceptable to p if p does not have a lock on any value other than v.

We now describe the processing during a particular trying phase k. Let s denote the time of the

beginning of the first round in phase k, and assume k _=i mod N. At time s. each processor (including

i) sends a list of all its acceptable values which are also in its PROPER set to processor i (in the form

of a (list, k) message). (if V is very large or infinite, it is more efficient to send a list of proper values

and a list of unacceptable values. Given these lists, the proper acceptable values are easily

deduced.) At time s + R, processor i attempts to choose a value to propose. In order for processor IL

to propose v, it must have heard that at least N - t processors (possibly including itself) find value v

acceptable and proper at the beginning of phase k. It is possible that there might be more than one

* a- a *'. *- .*. 4 z:. .,-.
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Consistency. No two different processors in C decide differently.

Eventual Agreement. If R is infinite then every processor in C makes a decision.

Unanimity. There are two types:

* Strong Unanimity: if all initial values are v then it any processor in C decides, then it decides v.

Weak Unanimity: if all initial values are v and C contains all processors, then if any processor

decides, then it decides v.

3. PARTIALLY SYNCHRONOUS COMMUNICATION AND SYNCHRONOUS PROCESSORS

In this section we assume that processors are synchronous and communication is partially

synchronous. Throughout most of this section we assume that the processor bound 0 = 1 to simplify

the exposition of the main ideas. Remarks at the end of the section then indicate several ways to

extend the results to the case (b> 1. Since processors operate in lock-step synchrony, it is useful to

imagine that each (correct) processor has a clock which is perfectly synchronized with the clocks of

other correct processors. Initially, the clock is 0, and a processor increments its clock by 1 every time

it takes a step. The assumption 4b = 1 implies that the clocks of all correct processors are exactly the

same at any real time step.

The next three subsections give consensus protocols and lower bounds for the four types of faults.

3.1 Fail-Stop and Omission Faults

The conseqnsus protocols in the following three subsections are all designed for the model in which

A holds sufficiently long, and they handle arbitrary value domains V. In case i = 1, as noted above,

we can imagine that all (correct) processors have access to a common clock. Time, as measured by

this clock, is divided into phases, and phases are subdivided into rounds of message exchange of
lengh Aeac. Th nuberA =N + A + 1 is chosen large enough to allow processors to "broadcast"

a message to all N processors (including themselves), and for all these messages to be received.

Since our model does not have an atomic broadcast operation, this is done by sending the message

to all processors, one at a time. Of course, our algorithms must allow for the possibility that a faulty

processor could fail in the middle of a "broadcast", and for the possibility that messages sent before

GST could be lost or arrive late: It will be seen that these possibilities do not affect the correctness of

our algorithms. A processor always attaches a phase identifier (number) to messages, and any
message sent during a phase h which arrives late during some phase h' > h is ignored. Thus, one can
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s > GST and s i- D is in I, then p will receive the message by step s + D: the message will be delivered

by step s + A and within 4(0 more steps p will execute a receiving clock maintenance operation.
Lemma 21: Let s and j be such that s > GST, s+ 16NW + D is in I, and c,(s) > j for all

correct pi. Then ci(s + 16N1) + D) j> j - 1 for all correct pi. I

Lemma 22: Let T = C(GST). Then C(GST + 52N + 4D) _ T + 2. I

Lemma 23: Let so be the minimum s such that C(s) = C(GST) + 2 (so exists by Lemma
22).

(1) For all x in I such that x > so+ D and for all correct processors i, ci(x) > C(x)-D-1.

(2) For ally _ s o such thaty + 32N4l + 3D is in I C(y + 32N0 + 3D) C(y) + 1. I

Lemmas 18, 20, 21, and 23 yield the correctness conditions which must be satisfied by the private

clocks of all correct processors. Specifically, Lemma 21 says that the private clocks do not grow too

slowly, while Lemmas 18 and 20 say they do not grow too quickly. That is, within a constant amount

of time after GST the private clocks grow within a constant factor of real time. As pointed out above,

Lemmas 18 and 2311l) say that soon after GST the private clocks of any two correct processors differ

by at most a known, additive constant, at least during the reliable interval.

4.2. A Distributed Clock for Byzantine Faults with Authentication

The new clock is very similar to the one just described. We only explain the differences. Here we

assume N > 2t + 1.

An i-claim is a signed message "I have broadcast an i-tick". A >i.claim is a i-claim for any i > i. For

i> 1, an i-tick is the message "<i,i-proof>" -where a 1-proof is the empty string and where an i-proof (i

> 1) is a list of t + 1 > (i. 1).claims each signed by a different processor.

A >i-tick is a j-tick for any j > i. The definitions of broadcast an i-tick and broadcast an i-claim are

the same as before.

The master clock C: N - N is defined by

C(s) = maximum j such that some correct processor has broadcast a j-tick by the beginning of step

S.

The private clock ci: N - N is defined by

c,(s) = maximum j such that p, has received t + 1 >-claims (from different sources), either directly,

or indirectly as part of a tick, by the beginning of step s.

The definition of the clock protocol is the same as before with the addition that whenever a
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processor sends a (b + 1)-claim in the procedure CLAIM(b), it attaches the largest size tick which it

can construct (this will always be a >(b + I)-tick). A correct processor will ignore any leceived i-claim

if it does not come with an attached >j-tick.

Lemma 24: Lemmas 18, 19, 20, 21, 22, and 23 hold for the authenticated Byzantine
clock. I

In addition, we need one more lemma to support our claim of a polynomial amount of

communication. The proof is immediate from the definitions.
Lemma 25: Any tick or claim sent by a correct processor at step s can be represented

by O(t log(C(s))) bits. I

4.3. Using the Clocks

As desc:ibed above, alternate pairs of receive-send operations are used to maintain a distributed

clock, and the other receive-send pairs are used to run one of the protocols of Section 3. For

Algorithm 1 (fail-stop and omission faults) we use the authenticated Byzantine clock, simplified

appropriately because the signatures are not needed and because we cannot assume the

authentication capablity. Note that the consensus protocol and the distributed clock protocol have

the same constraint on the number of processors, N > 2t + 1. For Algorithms 3 and 4

(unauthenticated Byzantine faults), we use the unauthenticated Byzantine clock. For Algorithm 2

(authenticated Byzantine faults) either clock could be used. For all four algorithms L, the length of

the reliable period, is somewhat larg.: r in we new model.

Processing is divided into alternating rounds and waiting periods of length R and W respectively.

Specifically, R = 4NO + A + 44) is the time required for N processors to broadcast a message and for

this message to be received, and W = 52N + 4(A + 40) is the maximum difference between the

private clocks of any two correct processors during [GST + sl, GST + L, where s1 = 52N4' + 5(A + 44b)

(see Lemmas 18, 22, and 23). When runningthe consensus protocol, a processor uses its private L
clock to determine its current phase and round. In addition to labelling messages with phase

numbers, processors label messages with round numbers. During any given round, only messages

labelled with the same round number are accepted; other messages are ignored. During any given

waiting period, only messages from either of the two adjacent rounds are accepted. No messages are

sent during waiting periods.

For all four of the consensus protocols, the proofs that no two correct processors decide differently

are identical to the proofs given in Section 3, since at no point in those proofs did we use the fact that

different processors are executing the same phase at the same real time. For example, in Algorithm

.. .*.....=,=,.=j a. .,, .. m~j .ll i l MII ... .. . ..... ~ .. . . .
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1, if a processor i decides v at its phase k, then at least t + 1 processors lock v at their phase k, and

one argues as in Lemma 2 that these locks will never be released at any higher numbered phase.

To argue eventual agreement after GST. note that by choice of W no two correct processors are
simultaneously executing different rounds at the same time x, for any x in the interval [GST + s2t
GST + LI. Further, any message labelled with a given round, say k, and sent to a correct processor

during [GST + s ,GST + L-13, will be received and accepted before that processor begins round k + 1.

We now choose the lengths TT and TR of phases large enough so that all required communication

during a phase will have time to tomplete, at least for all phases which take place entirely within

[GST + s,,GST + L].

Theorem 26: Assume the model where communication and processors are both
partially synchronous (delta and phi both hold sufficiently long). If Algorithms 1, 2, 3 and 4
are modified as decribed above, Theorems 4, 9, 14, 17 still hold. U

Our claims that the modified algorithms 1, 2 and 3 use a polynomial amount of communication and

that agreement is reached within a polynomial amount of real time after GST follow from the fact that

the master clock, during IGST + si ,GST + LI, is running at a rate no slower than 1/(32N°¢ + 3(A + 440))

times real time (see Lemma 23).

The results for the case in which processors are partially synchronous and communication is

synchronous are deferred to the complete paper.

Acknowledgment. Joe Halpern asked whether the impossibility results of [FLP,DDS] would

continue to hold in case the parameters 4 or A exist but are not known a priori, and this led to the

formulation of the version of partial synchrony where b or A are unknown.
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